翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

lotus effect : ウィキペディア英語版
lotus effect

The lotus effect refers to self-cleaning properties that are a result of very high water repellence (superhydrophobicity), as exhibited by the leaves of the lotus flower (''Nelumbo'').
Dirt particles are picked up by water droplets due to the micro- and nanoscopic architecture on the surface, which minimizes the droplet's adhesion to that surface.
Superhydrophobicity and self-cleaning properties are also found in other plants, such as ''Tropaeolum'' (nasturtium), ''Opuntia'' (prickly pear), ''Alchemilla'', cane, and also on the wings of certain insects.
The phenomenon of superhydrophobicity was first studied by Dettre and Johnson in 1964 using rough hydrophobic surfaces. Their work developed a theoretical model based on experiments with glass beads coated with paraffin or PTFE telomer. The self-cleaning property of superhydrophobic micro-nanostructured surfaces was studied by Barthlott and Ehler in 1977, who described such self-cleaning and superhydrophobic properties for the first time as the "lotus effect"; perfluoroalkyl and perfluoropolyether superhydrophobic materials were developed by Brown in 1986 for handling chemical and biological fluids.〔Brown (Laboratory vessel having hydrophobic coating and process for manufacturing same ) , Issued December 29, 1998〕 Other biotechnical applications have emerged since the 1990s.
==Functional principle==

The high surface tension of water causes droplets to assume a nearly spherical shape, since a sphere has minimal surface area, and this shape therefore has least surface energy. On contact with a surface, adhesion forces result in wetting of the surface. Either complete or incomplete wetting may occur depending on the structure of the surface and the fluid tension of the droplet.
The cause of self-cleaning properties is the hydrophobic water-repellent double structure of the surface. This enables the contact area and the adhesion force between surface and droplet to be significantly reduced resulting in a self-cleaning process.
This hierarchical double structure is formed out of a characteristic epidermis (its outermost layer called the cuticle) and the covering waxes. The epidermis of the lotus plant possesses papillae with 10 to 20 µm in height and 10 to 15 µm in width on which the so-called epicuticular waxes are imposed. These superimposed waxes are hydrophobic and form the second layer of the double structure. This system regenerates. This bio-chemical property is responsible for the functioning of the water repellency of the surface.
The hydrophobicity of a surface can be measured by its contact angle. The higher the contact angle the higher the hydrophobicity of a surface. Surfaces with a contact angle < 90° are referred to as hydrophilic and those with an angle >90° as hydrophobic. Some plants show contact angles up to 160° and are called super-hydrophobic meaning that only 2–3% of the surface of a droplet (of typical size) is in contact. Plants with a double structured surface like the lotus can reach a contact angle of 170°, whereby the droplet's contact area is only 0.6%. All this leads to a self-cleaning effect.
Dirt particles with an extremely reduced contact area are picked up by water droplets and are thus easily cleaned off the surface. If a water droplet rolls across such a contaminated surface the adhesion between the dirt particle, irrespective of its chemistry, and the droplet is higher than between the particle and the surface.
As this self-cleaning effect is based on the high surface tension of water it does not work with organic solvents. Therefore, the hydrophobicity of a surface is no protection against graffiti.
This effect is of a great importance for plants as a protection against pathogens like fungi or algae growth, and also for animals like butterflies, dragonflies and other insects not able to cleanse all their body parts.
Another positive effect of self-cleaning is the prevention of contamination of the area of a plant surface exposed to light resulting in reduced photosynthesis.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「lotus effect」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.